Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Proteome Res ; 19(11): 4275-4290, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-974861

ABSTRACT

SARS-CoV-2 (COVID-19) has infected millions of people worldwide, with lethality in hundreds of thousands. The rapid publication of information, both regarding the clinical course and the viral biology, has yielded incredible knowledge of the virus. In this review, we address the insights gained for the SARS-CoV-2 proteome, which we have integrated into the Viral Integrated Structural Evolution Dynamic Database, a publicly available resource. Integrating evolutionary, structural, and interaction data with human proteins, we present how the SARS-CoV-2 proteome interacts with human disorders and risk factors ranging from cytokine storm, hyperferritinemic septic, coagulopathic, cardiac, immune, and rare disease-based genetics. The most noteworthy human genetic potential of SARS-CoV-2 is that of the nucleocapsid protein, where it is known to contribute to the inhibition of the biological process known as nonsense-mediated decay. This inhibition has the potential to not only regulate about 10% of all biological transcripts through altered ribosomal biology but also associate with viral-induced genetics, where suppressed human variants are activated to drive dominant, negative outcomes within cells. As we understand more of the dynamic and complex biological pathways that the proteome of SARS-CoV-2 utilizes for entry into cells, for replication, and for release from human cells, we can understand more risk factors for severe/lethal outcomes in patients and novel pharmaceutical interventions that may mitigate future pandemics.


Subject(s)
Betacoronavirus , Coronavirus Infections , Host-Pathogen Interactions , Pandemics , Pneumonia, Viral , Proteome , Ribosomes , COVID-19 , Coronavirus Infections/genetics , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Databases, Genetic , Gene Expression Profiling , Humans , Pneumonia, Viral/genetics , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Proteome/genetics , Proteome/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Ribosomes/virology , SARS-CoV-2 , Transcriptome , Viral Proteins
2.
J Biol Chem ; 295(33): 11742-11753, 2020 08 14.
Article in English | MEDLINE | ID: covidwho-615997

ABSTRACT

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has challenged the speed at which laboratories can discover the viral composition and study health outcomes. The small ∼30-kb ssRNA genome of coronaviruses makes them adept at cross-species spread while enabling a robust understanding of all of the proteins the viral genome encodes. We have employed protein modeling, molecular dynamics simulations, evolutionary mapping, and 3D printing to gain a full proteome- and dynamicome-level understanding of SARS-CoV-2. We established the Viral Integrated Structural Evolution Dynamic Database (VIStEDD at RRID:SCR_018793) to facilitate future discoveries and educational use. Here, we highlight the use of VIStEDD for nsp6, nucleocapsid (N), and spike (S) surface glycoprotein. For both nsp6 and N, we found highly conserved surface amino acids that likely drive protein-protein interactions. In characterizing viral S protein, we developed a quantitative dynamics cross-correlation matrix to gain insights into its interactions with the angiotensin I-converting enzyme 2 (ACE2)-solute carrier family 6 member 19 (SLC6A19) dimer. Using this quantitative matrix, we elucidated 47 potential functional missense variants from genomic databases within ACE2/SLC6A19/transmembrane serine protease 2 (TMPRSS2), warranting genomic enrichment analyses in SARS-CoV-2 patients. These variants had ultralow frequency but existed in males hemizygous for ACE2. Two ACE2 noncoding variants (rs4646118 and rs143185769) present in ∼9% of individuals of African descent may regulate ACE2 expression and may be associated with increased susceptibility of African Americans to SARS-CoV-2. We propose that this SARS-CoV-2 database may aid research into the ongoing pandemic.


Subject(s)
Betacoronavirus/chemistry , Betacoronavirus/genetics , Coronavirus Infections/metabolism , Databases, Protein , Molecular Dynamics Simulation , Pneumonia, Viral/metabolism , Proteome , Amino Acid Transport Systems, Neutral/chemistry , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism , Angiotensin-Converting Enzyme 2 , Black People/genetics , COVID-19 , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Genetic Predisposition to Disease , Genetic Variation , Host-Pathogen Interactions , Humans , Male , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , Pandemics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Phosphoproteins , Pneumonia, Viral/virology , Protein Interaction Maps , Protein Processing, Post-Translational , SARS-CoV-2 , Sequence Homology, Amino Acid , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL